With the advent of spatially resolved fluorescence imaging in quantum gas microscopes, it is now possible to directly image glassy phases and probe the local effects of disorder in a highly controllable setup. Here we present numerical calculations using a spatially resolved local mean-field theory, show that it captures the essential physics of the disordered system, and use it to simulate the density distributions seen in single-shot fluorescence microscopy. From these simulated images we extract local properties of the phases which are measurable by a quantum gas microscope and show that unambiguous detection of the Bose glass is possible. In particular, we show that experimental determination of the Edwards-Anderson order parameter is possible in a strongly correlated quantum system using existing experiments. We also suggest modifications to the experiments which will allow further properties of the Bose glass to be measured.